Helicity is the only integral invariant of volume-preserving transformations.

نویسندگان

  • Alberto Enciso
  • Daniel Peralta-Salas
  • Francisco Torres de Lizaur
چکیده

We prove that any regular integral invariant of volume-preserving transformations is equivalent to the helicity. Specifically, given a functional I defined on exact divergence-free vector fields of class C(1) on a compact 3-manifold that is associated with a well-behaved integral kernel, we prove that I is invariant under arbitrary volume-preserving diffeomorphisms if and only if it is a function of the helicity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Entropy of infinite systems and transformations

The Kolmogorov-Sinai entropy is a far reaching dynamical generalization of Shannon entropy of information systems. This entropy works perfectly for probability measure preserving (p.m.p.) transformations. However, it is not useful when there is no finite invariant measure. There are certain successful extensions of the notion of entropy to infinite measure spaces, or transformations with ...

متن کامل

A New Cohomological Formula for Helicity in R Reveals the Effect of a Diffeomorphism on Helicity

The helicity of a vector field is a measure of the average linking of pairs of integral curves of the field. Computed by a six-dimensional integral, it is widely useful in the physics of fluids. For a divergence-free field tangent to the boundary of a domain in 3-space, helicity is known to be invariant under volume-preserving diffeomorphisms of the domain that are homotopic to the identity. We...

متن کامل

HELICITY AND PLANAR AMPLITUDES IN PION-PROTON SCATTERING AT 6.0 GeV/c

In addition to optimal conditions, invariant laws of Lorentz, parity and time reversal are imposed to find the relation between observables (spin rotation parameters) and bilinear combination of helicity amplitudes in pion-proton elastic scattering at 6.0 GeV/c. By normalizing the differential cross-section to unity, the magnitudes of helicity amplitudes and the angle between them are dete...

متن کامل

On the third order helicity of magnetic fields on invariant domains in S 3

We introduce an alternative approach to the third order helicity of a volume preserving vector field X. The proposed approach exploits correspondence between the Milnor ¯ µ 123-invariant for 3-component links and the homotopy invariants of maps to configuration spaces, and we provide a simple geometric proof of this fact in the case of borromean links. Based on these connections we develop a fo...

متن کامل

Some Observations on Dirac Measure-Preserving Transformations and their Results

Dirac measure is an important measure in many related branches to mathematics. The current paper characterizes measure-preserving transformations between two Dirac measure spaces or a Dirac measure space and a probability measure space. Also, it studies isomorphic Dirac measure spaces, equivalence Dirac measure algebras, and conjugate of Dirac measure spaces. The equivalence classes of a Dirac ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 113 8  شماره 

صفحات  -

تاریخ انتشار 2016